
CSCI 210: Computer Architecture
Lecture 4: Introduction to MIPS

Stephen Checkoway

Oberlin College

Slides from Cynthia Taylor

1

Announcements

• Problem Set 0 due tonight 11:59 p.m.

Why you should learn (a little) assembly

• Learn what your computer is fundamentally capable of

• By learning about how high-level mechanisms are created in
assembly, we learn what is fast, what is slow . . .

• Might use it for reverse engineering, embedded systems,
compilers

CS History: Sophie Wilson

Developed the ARM Instruction Set Architecture

The MIPS Instruction Set

• Used as the example throughout the book

• Stanford MIPS commercialized by MIPS Technologies (founded by John
L. Hennessy, who wrote your book.)

• Used in Embedded Systems

– Applications in consumer electronics, network/storage equipment, cameras,
printers, …

• Typical of many modern ISAs

– Most similar to ARM, RISC-V

Three Types of Instruction

• Arithmetic and logical (R)

– Operates on data entirely in registers

• Immediate (I)

– One of the values (operand) used by the instruction is encoded
directly in the instruction

• Jump (J)

– Changes the pc to a new location

Operands

• Assembly instructions operate on operands

– You can think of each instruction as a mini-function and the operands
are the arguments to the function

• Instructions are written in the form:
name op1, op2, op3

• There are different types of operands including

– Register operands

– Immediate operands

– Memory operands

Arithmetic and Logical Operations

• Add and subtract, three operands

– Two sources and one destination

 add a, b, c # a = b + c

 sub a, b, c # a = b – c
and a, b, c # a = b & c (bit-wise AND)

• All arithmetic and logical operations have this form with 3
operands

Convert to pseudoMIPS: f = (g + h) - (i + j);

A.

B.

C.

D. More than one of these is correct

add t0, g, h
add t1, i, j
sub f, t0, t1

sub f, (add g,h), (add i,j)

add f, g, h
sub f, i, j add a, b, c # a = b + c

 sub a, b, c # a = b – c

Register Operands

• Arithmetic instructions use register operands

• MIPS has thirty-two 32-bit general purpose registers
– Numbered 0 to 31

– Each register has a name that reflects its purpose (e.g., $t0, $a3, and $s7)

– 32-bit data called a “word”

• ARM has thirty 32-bit general purpose registers

• X86-64 has 16 general purpose registers, around 40 named registers
used by the processor
– Can be used as 8, 16, 32, or 64 bit registers

Aside: MIPS Register Convention
Name Register

Number
Usage

$zero 0 constant 0 (hardware)

$at 1 reserved for assembler

$v0–$v1 2–3 returned values

$a0–$a3 4–7 arguments

$t0–$t7 8–15 temporaries

$s0–$s7 16–23 saved values

$t8–$t9 24–25 temporaries

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return addr (hardware)

Register Operand Example

• C code:

 f = (g + h) - (i + j);

– f, g, h, and j in registers $s0, $s1, $s2, $s3, and $s4

• Compiled MIPS code:

 add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

Some R-type instructions

• add dest, src1, src2

• sub dest, src1, src2

• mul dest, src1, src2 # Pseudoinstruction!

• div dest, src1, src2 # Pseudoinstruction!

• move dest, src # add dest, $zero, src

• and dest, src1, src2

• or dest, src1, src2

• nor dest, src1, src2

• xor dest, src1, src2

Assume registers initially have the
following values

What values do they have after
running this code?

move $t0, $a0

add $t1, $a0, $a0

add $t1, $t1, $t1

sub $t0, $t1, $t0

add $v0, $t0, $a1

$a0 $a1 $t0 $t1 $v0

2 100 5 6 7

$a0 $a1 $t0 $t1 $v0

A 2 100 5 6 7

B 2 100 6 8 106

C 5 -10 -17 22 7

D 5 100 15 20 115

E None of the above

Questions about Arithmetic Operations?

Memory operands

• Memory operands are only used for instructions that load data
from memory into a register or store data from a register into
memory

• Memory operands have the form offset(register)

– E.g., 0($t0), 32($s0), -8($t1)

• The value of the operand is a memory address and it’s
computed by taking the value of the register and adding the
offset

– E.g., if register $t1 holds the value 1016, then -8($t1) refers to
address 1016 + -8 = 1008

Memory Instructions

• lw $t0, 0($t1)

– $t0 = Mem[$t1+0]

– Loads 4 bytes from $t1, $t1+1, $t1+2, and $t1+3

• sw $t0, 4($t1)

– Mem[$t1+4] = $t0

– Stores 4 bytes at $t1+4, $t1+5, $t1+6, and $t1+7

• These instructions are the cornerstones of our being able to
move data to and from memory

Load instructions

• lw — Loads 4 bytes of memory into a register

– lw $t0, 8($t4)

• lh — Loads 2 bytes of memory into a register

– lh $t2, 6($t1)

• lb — Loads 1 byte of memory into a register

– lb $t3, 3($t0)

• lw and lb are more common than lh

Store instructions

• sw — Stores 4 bytes from a register into memory

– sw $t0, 8($t4)

• sh — Stores 2 bytes from a register into memory

– sh $t2, 6($t1)

• sb — Stores 1 byte from a register into memory

– sb $t3, 3($t0)

• sw and sb are more common than sh

20

Accessing the Operands

There are typically two locations for nonconstant operands – registers
(internal storage e.g., $t0 or $a0) and memory. In each column we have
which—reg or mem—is better. Which row is correct?

Faster access Smaller number to specify a
reg/mem location

More locations

A Mem Mem Reg

B Mem Reg Mem

C Reg Mem Reg

D Reg Reg Mem

E None of the above

Load-store architectures
can do:

load r3, M(address)

 add r1 = r2 + r3

 forces heavy dependence
on registers, which is
exactly what you want in
today’s CPUs

can’t do

 add r1 = r2 + M(address)

- more instructions

+ fast implementation

Memory

• Main memory used for composite data
– Arrays, structures, dynamic data

• Memory is byte addressed
– Each address identifies an 8-bit byte

• Words are aligned in memory
– Address of a word must be a multiple of 4
– A word whose address is not a multiple of 4 is misaligned
– Misaligned memory accesses cause a hardware exception in MIPS

Memory Organization

• Viewed as a large, single-dimension array

• A memory address is an index into this array

• “Byte Addressing" means that the index points to a byte of
memory.

0

1

2

3

4

5

6

...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

Memory Organization

• Bytes are nice, but most data items use larger "words"
• For MIPS, a word is 32 bits or 4 bytes.

• 232 bytes with byte addresses from 0 to 232 - 1

• 230 words with byte addresses 0, 4, 8, ... 232 - 4

0

4

8

12

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

If you have a pointer to address 1000 and you increment it by one to 1001. What
does the new pointer point to, relative to the original pointer?

A) The next word in memory

B) The next byte in memory

C) Either the next word or byte – depends on if you use that address for a load byte
or load word

D) Pointers are a high level construct – they don’t make sense pointing to raw
memory addresses.

E) None of the above.

If a 4-byte word is in memory at address 4203084, what is the address of the next
word in memory?

A) 4203085

B) 4203088

C) 14203084

D) It depends on the value of the words in memory

E) Since a word is 4 bytes, it’s not possible to have one at address 4203084

Getting the address of data in the first place

• Three main locations for data in a program

– Global variables (these live in the data segment)

– Local variables (function call stack)

– Dynamically allocated memory (memory allocated at runtime)

Global variables

• Global variables live in the data segment

• We use assembler directives to
1. Switch to the data segment

2. Allocate space for the globals

3. Switch back to the text (code) segment

.data # Switches to data segment

nums: # Label for address of following array

.word 37, -42, 806 # allocates space for 3 words

.text # Switches back to the text segment

Load address pseudo instruction

Sets a register to the address pointed to by the symbolic label

.data

nums: .word 37, -42, 806

.text

main:

 la $s0, nums

 lw $t0, 0($s0)

 lw $t1, 4($s0)

 lw $t2, 8($s0)

Reading

• Next lecture: Assembly

– 2.3

• Problem Set 0: Due tonight at 11:59 p.m.

• Problem Set 1: Due next Friday at 11:59 p.m.

30

	Slide 1: CSCI 210: Computer Architecture Lecture 4: Introduction to MIPS
	Slide 2: Announcements
	Slide 3: Why you should learn (a little) assembly
	Slide 4: CS History: Sophie Wilson
	Slide 5: The MIPS Instruction Set
	Slide 6: Three Types of Instruction
	Slide 7: Operands
	Slide 8: Arithmetic and Logical Operations
	Slide 9: Convert to pseudoMIPS: f = (g + h) - (i + j);
	Slide 10: Register Operands
	Slide 11: Aside: MIPS Register Convention
	Slide 12: Register Operand Example
	Slide 13: Some R-type instructions
	Slide 14
	Slide 15: Questions about Arithmetic Operations?
	Slide 16: Memory operands
	Slide 17: Memory Instructions
	Slide 18: Load instructions
	Slide 19: Store instructions
	Slide 20: Accessing the Operands
	Slide 21: Load-store architectures
	Slide 22: Memory
	Slide 23: Memory Organization
	Slide 24: Memory Organization
	Slide 25
	Slide 26
	Slide 27: Getting the address of data in the first place
	Slide 28: Global variables
	Slide 29: Load address pseudo instruction
	Slide 30: Reading

